
Abstract

Although component software has emerged as one of the
most significant and commercially successful technologies
of the past few years, few operating systems are designed
to host and manage component software effectively.
Components impact OS architectures in areas of security,
process isolation, code sharing, installation management,
and user interface design. A more radical question is: can
effective operating systems be built of modular, inter-
changeable component parts? The thesis of this paper is
that effective support of components is a key requirement
for operating systems of the future.

1. Introduction

Component software is revolutionizing the application
industry: from word processors to back end servers to web
browsers, a broad range of commercial applications is
being assembled from ActiveX’s [3, 7], OpenDoc parts
[15], Java Applets [4], Java Beans [13] and OCX’s. There
are rumored to be over a thousand businesses developing
reusable commercial components, and special purpose
controls are emerging as the new building blocks for
software reuse in vertical markets. Microsoft has used its
ActiveX infrastructure to muscle into the Web browser
business, with an offering that can be broken into modular
pieces useable on both the OS desktop and in special
purpose applications [6, 8]. Java Applets and Java Beans
are emerging as the first breed of truly portable compo-
nents, which can run across a range of operating systems
and devices.

Ironically, all of this is happening just as a generation
of operating systems designed to support more conven-
tional software is maturing. Much of OS research remains
focused on issues arising from these earlier systems:
improving the performance of networked file systems,
exploring impacts of scheduling policies on processor

cache miss rates, etc. Though most of these remain impor-
tant problems in a world of components, the thesis of this
paper is that components introduce a range of new issues
and architectural requirements, and that they change the
environment in which other questions, such as perform-
ance, should be explored. Finally, if applications can
successfully be assembled from modular components built
by separate companies and organizations, can operating
systems be built in the same manner?

2. A brief history component software and
operating systems

Many techniques have evolved for building code that is
modular or reusable. Using such techniques, one can build
software components [5], which are designed and
packaged for reuse, typically by multiple independent
organizations. Reusable software components are often
compared to their mechanical counterparts, which in the
19th century were a catalyst for the industrial revolution.
Indeed, many of the operating system issues discussed in
this paper have direct counterparts in the mechanical
world: tracking inventories of mechanical components
versus managing the distribution and registration of
software components; keeping documentation and run time
type information in sync with the corresponding compo-
nent or mechanical design; qualifying a component for use
in specific environments (consider, for example, an insur-
ance application program which can be built only of
components which have been certified by the actuarial
department.)

The earliest software components were subroutines,
typically shared in source form by duplicating card decks
or in other ad-hoc ways. Almost immediately, operating
systems adapted to facilitate the use and sharing of such
software. File systems stored the code, and link editors
allowed application programs to be assembled from shared
pieces, first in batch mode, and later through dynamic

Operating Systems for Component Software Environments

Noah Mendelsohn
Lotus Development Corporation

One Rogers Street
Cambridge, MA 02142

linking at execution time. Operating systems soon
provided explicit services for loading libraries, managing
dynamic links, and for sharing in-memory library images
across multiple applications and processes. For many
years, subroutines and code libraries were the fundamental
building blocks for shared code. Distribution of code
libraries was still ad hoc, often on magnetic tape, with
installation and management procedures particular to the
library: a math library might be installed and registered in
one manner, but a spelling checker would be installed
specifically into a word processor.

Unix standard I/O and pipes [11] encouraged the use of
entire applications as components. Utility applications
such as sort could be assembled to make larger applica-
tions for special purposes. Indeed, certain applications
such as tee were intended for use only as part of a larger
“pipe”. Once again, a combination of language and
operating system technologies were used to implement the
modularity required of components. Per component
overhead and limitations of the stream abstraction
prevented pipes from evolving into a more general purpose
component framework.

Device drivers were and are another special purpose
example of software componentry in traditional operating
systems. Drivers are typically packaged and installed in a
standard manner, have a tight contract with the OS, and are
in some sense interchangeable.

Except for subroutines and code libraries, none of these
technologies provided a general or ubiquitous framework
for the development of modular software and shared code.

3. Modern component software

A new style of component has emerged to support tight
integration of fine grain components from diverse suppli-
ers. Examples include Microsoft’s OLE/OCX/ActiveX [2,
3, 7], OpenDoc from CILabs [15], and more recently Java
Applets and especially Java Beans from Sun Microsystems
[4, 13]. Characteristics typically shared by these compo-
nent architectures include:

� Use of object oriented API’s to provide (1) a richer
“contract” for service (compared with simple
subroutines, pipes, etc.) ... typical features include
component properties, methods, events and some
standard means of reflecting errors; (2) a means by
which components can be extended or specialized
to create new components; and (3) a means by
which multiple components can be assembled to
create richer components.

� A binary calling standard for mapping to each
particular platform. If various components and
languages implement the calling convention, then
all operate interchangeably. Microsoft, for
example, supports full interoperation of compo-
nents written in C, C++, Java, Basic, and Cobol on
32 bit Windows platforms. Java Beans are unique
in supporting a common binary standard for all
platforms – a single packaged component can
therefore be used in any application on any
platform, as well as in cross platform applications.

� Support for recursive activation of one component
within another.

� Standard persistence mechanisms.

� Machine readable meta-class descriptions (run time
type information) to support scripting, builder tools,
and strongly typed dynamic assembly.

� A name space in which component classes are
identified. Typically, the name space must support
dynamic creation of globally unique component
names by organizations dispersed throughout the
world. Examples include OLE Class Identifier
(CLSID) Globally Unique Identifiers (GUIDS) [2],
which are based on DCE UUIDs; and Java class
names, which are based on DNS names and are
used as the name space for Java Beans. Compo-
nents are activated by name from these name
spaces, not by file identifier.

� Standard packaging and/or registration technology,
typically including: (1) a means by which all the
files and data required by the component can be
packaged, distributed, installed, and identified in a
standard manner, regardless of the purpose of the
component; and (2) licensing and other information
needed to determine whether a component can
legally be used, whether it has been qualified or
approved for a specific purpose, etc.

� A common means of activating or instantiating
components, regardless of type or intended use.

These technologies are being successfully applied to a
broad range of server and client components for a wide
variety of applications.

4. Challenges for operating system
architecture

The new component architectures impact operating
system usage in many ways. Code is loaded not by file
name, but by component name. Resources must be
allocated to and shared by the multiple components
comprising an application. Security, process isolation,
code sharing, code segment and code image file manage-
ment, code installation, and user interface design must all
be considered.

A look at Microsoft’s ActiveX architecture highlights
some of the issues: in practice, ActiveX components are
packaged in Windows dynamic link libraries (.dll), which
are loaded and managed by the OS in the same manner as
any other library. The multiple components that form a
single application share a process context, an OS security
context, execute on the same stack(s) and share access to
the same memory.

The OS is oblivious to the component abstraction and
cannot effectively provide a service tailored to individual
components. In a component-based application, a file
opened by one component might inadvertently be manipu-
lated or closed by another. Use of a shared library .DLL
by one component can prevent correct execution of a
second component that depends on a revised version of the
same library; library loading is a service provided to
processes not, individual components. On the Windows 3.1
platform, arbitrary nestings of OCX components from
multiple vendors share a stack of limited size; there is no
way to know in advance how much, if any, memory is
available for any particular component. Building a robust
component therefore becomes extraordinarily difficult.
Further, lack of isolation tends to result in one compo-
nent’s bugs crashing another: component 1 almost fills the
stack, the crash comes when the user activates component
2. In a commercial setting, the support costs of dealing
with such confusion are significant. These examples,
based on OCX and ActiveX, illustrate the manner in
which a component’s “contract” with the outside world
extends far beyond its explicit API; component vendors
must know when and where their components will run
safely. In practice, Microsoft has added certain component
management functions to the Windows NT and Windows
95 kernels, but many of the problems discussed here
remain. Similar difficulties are observed when other
component architectures, such as OpenDoc, are hosted on
conventional operating systems.

All of these problems result from a poorly specified
contract between a component and the supporting OS,
compounded by the need to integrate components from

multiple suppliers into a single application. The
challenges for component vendors are significant. How
can one effectively test and certify the reliability of a
component that will run in such an unstructured environ-
ment? How can potentially sensitive data be safeguarded
from other components in the same application?

It’s quite an irony that, just as operating systems are
incorporating increasingly robust isolation across processes
and users (C2 security, ACL’s, etc.), modern component
architectures are collapsing the execution environment into
fewer processes. Most of the code executed by a modern
Web browser, including plugins (another form of compo-
nent), ActiveX controls, etc, often for multiple end-user
applications, runs in a single OS process and protection
domain. Indeed, the Java sandbox model, which does deal
with some of these problems, underscores the inability of
traditional OS’s to provide an effective solution.

Just as inventory management is a central problem
when manufacturing mechanical assemblies, component
management is an increasingly important challenge for the
modern networked OS. Application builder programs
(PowerBuilder, JBuilder, Visual Age, Visual Cafe, Visual
Basic, etc.) depend on libraries of components which can
be assembled to form applications. These compo-
nent repositories are evolving into secure, distributed, code
and data stores which manage the installation and deploy-
ment of components throughout a network. The new
repositories assist with internationalization of components,
license tracking, certification management etc. Is an
“a.out”, “.exe”, or “.dll” file still the right core OS
abstraction for loading code, or should there be a more
fundamental notion of component which can be bound and
activated? Is the file system the right code storage model,
or is it to be replaced by a distributed database or registry,
tuned to the management and deployment of these compo-
nents?

Dynamic linking, at the OS level, is usually procedural,
yet components are increasingly object oriented. Will new
OS’s directly support object composition and dynamic
method dispatch, or are the existing layerings of object
“sugar” onto procedural plumbing still appropriate? As
operating systems evolve to provide separate execution
domains for untrusted components, how will performance
be maintained? Can debugging be done effectively in such
an environment?

5. Operating systems for component
applications

The section above presented a sampling of the many
ways in which component software differs from that

originally supported by operating systems such as Unix
and NT. One may reasonably guess that, as components
become ubiquitous, component will join file and process
as a fundamental OS abstraction. In the same sense that a
process represents a clearly defined execution environment
for traditional software, components will have a useful and
well specified contract with the host operating system, as
well as with other components in the same application.
Specifics of the implementation will depend on the nature
of the system and its intended application. Even today, a
real-time OS provides a higher performance but less robust
process abstraction than one would find in Unix or NT.
Similar considerations will apply when tailoring the
component abstraction to particular requirements.

The tradeoff between component isolation and perform-
ance will also depend on the types of components and
applications to be supported. Indeed, there may be value
in having two levels of component within the same OS,
much as one has both threads and processes. Families of
mutually trusting lightweight components, operating with
minimal isolation and highest performance, would be
aggregated to build course grained mutually-suspicious
components, from which applications would ultimately be
assembled.

Over time, dynamic link libraries will be replaced
entirely by components. Each will be named by a compo-
nent identifier, an URL perhaps, and retrieved from a
distributed component repository. Microsoft’s Component
Object Model, which underlies ActiveX, already uses the
Windows NT registry as a primitive implementation of a
component repository. Most likely, object oriented
dynamic binding and aggregation will be integrated into
the core OS services for loading libraries and components.

The Java Virtual Machine [10, 14], viewed as an OS, is
an interesting first step down the path outlined in this
paper. All Java code is object oriented and is bound and
activated by class name; dynamic object based linking is
provided as a core OS service. Although Java provides
strongly specified notions of class and object, libraries
(Zip and Jar files [12]) and components (Java Beans [13]),
are treated informally, or layered on top of the core OS
abstractions. Isolation is supported by abstractions of
ClassLoader and ThreadGroup, which are only indirectly
related to the concept of component or Bean. Beans are
packaged in Jar files, which are analagous to Unix object
code archives or Windows object code libraries, but facili-
ties for managing or binding to packaged Beans are
minimal. There is no clear notion of a component reposi-
tory, except insofar as ClassLoaders provide an enabling
building block. Many other issues relating to component
management remain unresolved; as far as the Java VM is
concerned, a Java Bean is just another object.

6. Conclusion

The challenges of building component based applica-
tions are increasingly well understood, but the required
evolution of the OS layer has just begun. This paper
outlines some of the issues that must be considered, but
detailed solutions will come from others in the future.

A formal abstraction for component, joining those tradi-
tionally provided for processes, threads, files, etc., seems
to offer a framework within which component software
can effectively be supported.

The great success of Java itself, and the initial positive
response to Java Beans, suggests that a viable operating
system can be based on the concepts outlined in this paper.
Certainly, offerings such as OCX, ActiveX, OpenDoc and
Java Beans have proven the importance and commercial
viability of component software, and Microsoft’s Windows
NT implementation has demonstrated both the potential
and the limitations of a component system layered on a
traditional operating system. Indeed, based on experience
with NT, it is premature to conclude that modern operating
systems must be replaced, or even radically altered to
support components. Perhaps a gradual evolution will be
more appropriate. It is not premature to make compo-
nents an important new focus for operating research and
development. Whatever the final answer, the thesis of this
paper is that the “component revolution” will be a defining
backdrop for OS evolution and research during the next
few years.

7. Epilogue: the component OS

If application components have proven the possibility of
constructing large software projects out of modular pieces,
some of which are “off the shelf” components, could a
radically new OS be built in the same manner? What if
more than device drivers, shells and file systems were
pluggable? Would the packaging and programming
techniques used for application components apply? Could
a customized OS be developed using visual tools and with
minimal programming skills? If we could do it, would we
be solving a useful problem?

Obviously, some of this is already happening. The user
interface for modern commercial operating systems is
increasingly modular and replaceable: Apple and IBM
used OpenDoc in Copland and the OS/2 Workplace shell
respectively, and Microsoft’s next Windows shell will
make heavy use of replaceable ActiveX components.
These components can already be assembled with power-
ful visual tools, involving little or no programming.

But what about core functions? SPIN [1], Exokernel
[9] and other extensible kernels are exploring the infra-
structure required for safe, modular extension of a
protected operating system. They are laying the ground-
work for implementation of core operating systems
features using components. So far these systems have
apparently not explored in detail issues of packaging,
distribution, visual assembly, or integration with applica-
tion level component models.

Will the buffer manager ever be an off the shelf compo-
nent in the file system? Will thread management come in
a box? Returning to analogies from the industrial world,
automobiles are built from many thousands of components.
In the warehouse and on the assembly line these are
tracked through a uniform component naming scheme by
integrated tracking systems. Certain characteristics, such
as weight, are recorded and processed in a common
manner, regardless of component type or supplier. Yet,
many of the components in a car are special purpose, used
in only one type of car and tightly dependent on the
components around them. Others, such as standard nuts
and bolts, are interchangeable with other cars, and even
with other manufactured goods. In the middle ground are
items such as steering wheels, which often have limited
applicability across a group of vehicles with similar
requirements. Some, such as radios, can be replaced with
aftermarket equivalents after the product has been built
and sold.

The analogy to operating systems may be a good one.
Over time, the general techniques of standardized packag-
ing, identification, and certification can be applied
uniformly to OS and application components. Component
activation will be a core OS service, for the kernel as well
as users, and where possible pieces of the OS will be
named, managed and activated as components. As with
cars, many pieces will be specific to individual OS’s,
tightly integrated for performance and robustness with the
components around them. Over time, some new pieces of
the OS will become interchangeable, and available “off the
shelf”, but many others will remain special purpose.

Whether the complexity of such an OS implementation
is justified remains to be seen. Yet, it is interesting to
speculate that in the future, operating systems may be
assembled or configured graphically, and with relatively
little programming, and that the benefits of interchange-
able commodity parts may eventually be applied to all
layers of the software hierarchy.

8. Acknowledgments

Mark Day and the conference referees have provided
many helpful comments on the manuscript of this paper.
For the past four years I have had the pleasure of working
with and learning from some of the pioneers in the compo-
nent software industry. Though our contacts are
occasional, Tony Williams, Kurt Piersol, Graham Hamil-
ton, Larry Cable and other members of the OLE, OpenDoc
and Java Beans teams have taught me, directly and through
their work, much of what I know of this field. Douglass
Wilson, Barry Briggs, Joe Guthridge, Jack Ozzie, and a
long list of co-workers at Lotus have helped me to learn
the realities of building world class applications, compo-
nents and objects, and supporting them for millions of
customers. Special thanks to Dean Burson, to all the
members of my team past and present, and especially to
Alex Morrow.

9. References

[1] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G.,
Fiucznski, M. E., Becker, D., Chambers, C., and Eggers, S.,
Extensibility, Safety and Performance in the SPIN Operat-
ing System, in Proceedings of the Fifteenth ACM Symposium
on Operating System Principles, pp. 267-286, December,
1995.

[2] Brockschmidt, K. Inside OLE 2, Microsoft Press, 1994.
[3] Chappell, D. Understanding ActiveX and OLE, Microsoft

Press, 1996,
[4] Cornell, Gary, and Horstmann, Cay S., Core Java, SunSoft

Press, 1996.
[5] Cox, Brad J., and Novobilski, Andrew J., Object Oriented

Programming: An Evolutionary Approach, Addison Wesley,
1991.

[6] DeLascia, P. and Stone, V. Sweeper, Microsoft Interactive
Developer, Vol. 1, No. 1, pp. 16-52, Spring, 1996

[7] Denning, A., ActiveX Controls Inside Out, Microsoft Press,
1997.

[8] Eddon, G. and Eddon, H. Preview Version 3.0: not just
another Web browser, Microsoft Interactive Developer, Vol.
1, No. 2, pp. 14-18, Summer, 1996.

[9] Engler, D., Kaashoek, M.F., and O’Toole, J., Exokernel: An
Operating System Architecture for Application-Level
Resource Management, in Proceedings of the Fifteenth
ACM Symposium on Operating System Principles, pp.
251-266, December, 1995.

[10] Gosling, J., Joy, B. and Steele, G. The Java™ Language
Specification, Addison-Wesley , 1997.

[11] Kernighan, B. and Pike, R., The UNIX Programming
Environment, Prentice-Hall, 1984.

[12] JavaSoft. The Jar Guide, Unpublished. Available from:
http://www.javasoft.com/products/jdk/1.1/docs/guide/jar/jar
Guide.html, December, 1996,

[13] JavaSoft. The Java Beans™ 1.0 API Specification, Version
1.00-A, Unpublished. Available from: http://java.sun.com/,
December, 1996,

[14] Lindholm, T. and Yellin, F., The Java™ Virtual Machine
Specification, Addison-Wesley, 1997.

[15] Orfali, R., Harkey, D. and Edwards, J., The Essential
Distributed Objects Survival Guide, John Wiley & Sons,
1996.

